સમીકરણ ${\sin ^2}\,2\theta + {\cos ^4}\,2\theta = \frac{3}{4}$ ના $\theta \, \in \,\left( {0,\frac{\pi }{2}} \right)$ ના બધા ઉકેલો નો સરવાળો .......... થાય.
$\pi $
$\frac{{5\pi }}{4}$
$\frac{{\pi }}{2}$
$\frac{{3\pi }}{8}$
${\rm{cosec }}A - 2\cot 2A\cos A = $
$\sin 600^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ =....$
$\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5} = $
જો $A + B + C = \frac{{3\pi }}{2},$ તો $\cos 2A + \cos 2B + \cos 2C = $
જો $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, તો $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }} = . . ..$